Which Anodes Work the Best?

Aluminum is more active than zinc, but attracts more growth.

0

anode test

A year from now, Practical Sailor will be reporting on sacrificial anodes, both zinc and aluminum, and how they performed in the salt waters of south Florida and the brackish waters of Chesapeake Bay. Sacrificial anodes are used to protect a sailboats exterior components from galvanic corrosion, a process during which more noble, cathodic metals like stainless steel cause less noble, anodic metals like aluminum to be eaten away by corrosion as they lose electrons.

The process can occur anywhere that there is a galvanic circuit between the two dissimilar metals. It is greatly accelerated in the presence of salt water. As the name implies, the anodes, which are made of less noble metals like aluminum or zinc, sacrifice themselves to protect the least noble metal in the galvanic circuit.

Engine-cooling systems, sail drives, and prop-shafts are the most common applications where anodes are used on sailboats. Dinghy outboards also require anodes. Because the anodes are eaten away in the process, boat owners must replace them on a regular basis, usually when the anodes mass is reduced to one-half of its original size.

Sacrificial anodes are relatively inexpensive, but the consequences of corrosion resulting from an ineffective or failed anode can be serious. More than one boat has sunk on its mooring due to a through-hull failure caused by galvanic corrosion.

PS often performs mini-tests before setting up for long-term testing; it allows us to adjust the severity of test conditions to ensure that there will be measurable differences and that the test protocol is reasonable. Often, preliminary results show trends and are worth sharing before our findings are complete.

Pre-test Findings

The anode pre-test was carried out in Chesapeake Bay, ran for three summer months, and consisted of prop-shaft zincs clamped to copper pipe and suspended about two feet below the brackish waters surface. We chose copper because it is the copper in bronze that initiates current flow, and using it will accelerate failure.

So far, aluminum is clearly more active than zinc, pitting and losing metal slightly faster. While aluminum anodes have more electrons available to protect running gear, they seem to waste slightly faster, resulting in a marginally shorter useful life. Faster wasting (zinc is somewhat deactivated in brackish water), combined with the slightly higher galvanic driving potential of aluminum, should result in better protection of underwater metals.

On the other hand, aluminum anodes seem to attract more growth, perhaps because better corrosion protection means fewer copper ions in the water or perhaps because of hydrogen gas generated at the cathode. Whatever the cause, within just three weeks, we saw more soft growth on the aluminum-protected copper pipe as compared to the zinc-protected copper pipe (same brand and size anode).

After three months of soaking in the mid-Chesapeake, the aluminum-protected copper pipe had more hard growth; four barnacles in the photographed area of the aluminum-protected pipe versus none on the zinc-protected pipe. The aluminum-protected copper pipe suffered less corrosion.

What does all of this mean? Stay tuned. In a year, we will be reporting on nearly 20 samples. Meanwhile, we suggest following the conventional wisdom: Check your anodes at least quarterly and replace them yearly, or when less than half the anode remains. Avoid overprotecting; too much zinc can cause problems, especially on wooden boats. Pencil zincs protecting engine heat-exchangers must meet makers specs. For props: In general, anode manufacturers recommend zinc in salt water, aluminum in brackish water, and magnesium in fresh water. In our recent survey, the only boats with serious damage had no anodes at all.

Practical Sailor has been independently testing and reporting on marine products for serious sailors for more than 45 years. Supported entirely by subscribers, Practical Sailor accepts no advertising or any form of compensation from manufacturers whose products we test. Testing is carried out by a team of experts from a wide range of fields including marine electronics, marine safety, marine surveying, sailboat rigging, sailmaking, engineering, ocean sailing, sailboat racing, and sailboat construction and design. This diversity of expertise allows us to carry out in-depth, objective evaluation of virtually every product available to serious sailors. Practical Sailor is edited by Darrell Nicholson, a long-time liveaboard sailor and trans-Pacific cruiser with more than three decades of experience as a marine writer, photographer, boat captain, and product tester. Before taking on the editor’s position at Practical Sailor, Darrell was the editor of Offshore magazine, a boating-lifestyle magazine serving the New England area. Darrell has won multiple awards from Boating Writer’s International, including the Monk Farnham award for editorial excellence. He holds a U.S. Coast Guard 100-ton Master license and has worked as a harbor pilot and skippered a variety of commercial charter boats.

LEAVE A REPLY

Please enter your comment!
Please enter your name here